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1 Abstract

A simple and e�cient computational method is pre-

sented for unstructured surface grid generation. This

method is built upon an advancing front technique

combined with grid projection. The projection tech-

nique is based on a Newton-Raphson method. This

combined approach has been successfully implemented

for structured and unstructured grids. In this pa-

per, the implementation for unstructured grid is dis-

cussed.

2 Introduction

The �rst step in obtaining a ComputationalFluid Dy-

namics (CFD) solution is the creation of structured

or unstructured grids. This step typically requires a

considerable amount of time and e�ort on the part of

a designer. The process of transforming an aerody-

namic con�guration from a Computer-Aided Design

(CAD) model to a CFD surface grid is referred to as

the surface-grid generation process. This process is

often a formidable one for complex geometries such as

realistic aircraft and spacecraft con�gurations. CAD

systems typically represent the surfaces of aerody-

namic vehicles with a set of parametric surfaces such

as NonUniform Rational B-Splines (NURBS). Then,

CFD surface grids are generated on these NURBS

surfaces.
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The surface grid can be generated either in a pa-

rameter space or on approximated/simpli�edNURBS

surfaces. Generating grids in a parameter space is

very common in structured grid generation. This ap-

proach has two serious restrictions. The �rst restric-

tion is that the choice of surface parameterization af-

fects the CFD surface grid. As shown in ref[1], a poor

parameterization may cause the CFD surface-grid to

be highly skewed. There are several ways to allevi-

ate this problem which have been discussed in great

detail in [1]. The second limitation is that a CFD

surface grid can not be generated over several over-

lapping NURBS surfaces. This is the most serious

restriction.

In the second method , the NURBS surfaces are

approximated by a few smaller bi-linear patches. Then,

the surface grids are generated on these bi-linear patches.

This method is quite easy to implement, and it avoids

the problems associated with surface parameteriza-

tion. However, the resulting grids are close but not

on the original NURBS surfaces. This problem can

be alleviated by projecting the resulting grids onto

the original NURBS surfaces. After the �rst projec-

tion, the projected grids may need to be smoothed

and projected again. The projection techniques de-

scribed here can be used for structured grid genera-

tion as well.

In this study, the NURBS surfaces are �rst ap-

proximated by a set of smaller bilinear patches. Then,

an advancing front technique is used to generate grids
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on these patches. And, �nally these grids are pro-

jected back onto the NURBS surfaces. In the follow-

ing sections, the techniques for projecting a point on

a curve and on a surface are described. Then, a vari-

ation of the advancing front technique is presented.

Finally results are summarized.

3 Projecting on a Curve

Curves are generally expressed by parametric splines

such as NURBS as,

~R(u) = fx(u); y(u); z(u)gT ; u 2 [a; b]:

Points ~R(a) and ~R(b) are the beginning and the end-

ing points of the curve, respectively. The variable u

is a parameter which has no geometric signi�cance.

However, as u increases, the point ~R(u) always moves

from the beginning to the end of the curve (Fig. 1).

This property is referred to as monotone parameter-

ization which is essential for curve and surface repre-

sentations.

The process of projecting a point, ~r, on a curve,

~R(u), can be achieved by �nding a parameter u such

that the distance between the point, ~r, and the curve,

~R(u), is minimum and u is constrained to u 2 [a; b].

This is a constrained minimization problem which

can be written in terms of distance, d, as

d2(u) = f(u) = j~R(u)� ~rj2: (1)

For curves, the constrained minimization problem is

relatively simple to solve. A Newton-Raphson method

is used in this study. In order to �nd the minimum

distance, Eq. 1 must be di�erentiated with respect to

u and set equal to zero, as

@f(u)

@u
=

@ ~R(u)

@u
� f~R(u) � ~rg = 0: (2)
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Figure 1: Parametric Curve
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Figure 2: Projection on a Straight Line

Two test cases have been selected for this section:

projecting a point on a straight line and on a NURBS

curve.

In the �rst test case, a point is projected on a

straight line as shown in Fig. 2. The line is expressed

in terms of parameter u, as

~R(u) = (~Rb � ~Ra)u+ ~Ra: (3)

The projected point, ~A = ~R(u), can be determined

by combining Eqs. 2-3,

u =
(~r � ~Ra) � (~Rb � ~Ra)

(~Rb � ~Ra) � (~Rb � ~Ra)
: (4)

In order to insure that the projected point is on the

straight line segment, parameter u must be 2 [0; 1].

Therefore, the parameter u (calculated from Eq. 4)
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must clipped as

u = minfu; 1g; u = maxfu; 0g: (5)

The second test case is based on projecting on a

NURBS curve. A NURBS curve can be expressed in

terms of parameter u as,

~R(u) =

P
n

i=0
Ni;p(u)wi

~PiP
n

i=0
Ni;p(u)wi

(6)

where ~Pi are control points (forming a control poly-

gon), wi are the weights, and Ni;p are the p-th degree

B-spline basis function de�ned on the non-periodic

and nonuniform knot vector [2]. Combing Eqs. 2

and 6 yields a nonlinear equation which is solved by

a Newton-Raphson method. Once the parameter u

is determined, it has be be clipped as described by

Eq. 5. This method requires an initial guess which

can be obtained by sampling the curve, ~R(u), at sev-

eral locations. This approach is very robust and e�-

cient. It takes an average of �ve iterations to reduce

the residual by �ve orders of magnitude. The projec-

tion process is shown in Fig. 3. Figure 4 shows the

results of projecting points onto a NURBS curve. The

dashed-line shows the control polygon for the NURBS

curve. Weights for the �rst and last control points are

unity, and weights for the middle control points are

ten. The solid line shows the NURBS curve, the tri-

angle symbols show the points before the projection,

and the square symbols show the points after projec-

tion.

4 Projecting on a Surface

Surfaces are generally approximated by parametric

surfaces, e.g. NURBS, as,

~R(~u) = fx(~u); y(~u); z(~u)gT ;

R(u)
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Figure 3: Projection Process for a Curve
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Figure 4: Projection on a NURBS Curve
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~u = fu1; u2g
T ;2 [(a; b); (c; d)];

where ~u are the parameters which have no geometric

signi�cance. However, for a constant u2, as u1 in-

creases, the point ~R(~u) always moves from one side

of the surface to the other side. The process of pro-

jecting a point, ~r, on a surface, ~R(~u), can be achieved

by �nding ~u such that distance, d, between the ~r

and ~R(~u) is minimum and ~u is constrained to be

2 [(a; b); (c; d)]. Distance, d, can be written in terms

parameter ~u as,

d2(~u) = f(~u) = j~R(~u) � ~rj2: (7)

In order to �nd the minimum distance, Eq. 7 must

be minimized with respect to ~u. This can be accom-

plished by setting the gradient of f , rf(~u), equal to

zero, as

rf(~u) = Gi(~u) =
@f(~u)

@ui
= 0; (8)

Gi(~u) =
@ ~R(~u)

@ui
� f~R(~u)� ~rg:

The above nonlinear system of equations must be

solved for ~u. Three test cases are discussed here: (1)

projection on a three-dimensional triangle element,

(2) projection on a bilinear patch, and (3) projection

on a NURBS surface.

As shown in Fig. 6, a three-dimensional triangle

element can be represented in terms of its parametric

coordinates as

~R(~u) = ~R1u1 + ~R2u2 + ~R3u3;

u1 + u2 + u3 = 1;

or

~R(~u) = (~R1 � ~R3)u1 + (~R2 � ~R3)u2 + ~R3: (9)

Combining Eqs. 8-9 yields the following system of

linear equations,

R2

R3

R1

u1

u2u3

Figure 5: Parameter for a Triangular Element
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Figure 6: Projection on a Triangular Element

( �S2 � �S2)u1 + ( �S1 � �S2)u2 = ( �S � �S2)

( �S2 � �S1)u1 + ( �S1 � �S1)u2 = ( �S � �S1)

u1 + u2 + u3 = 0:

For triangular elements, the above equations are solved

for ~u (see Fig. 6 for de�nitions of S1, S2 and S). The

projected point is inside the triangle if 0 � ui � 1 and

0 � u1 + u2 + u3 � 1, otherwise it is outside. If the

projected point is outside of the triangular element,

the parameters, ui, must be clipped as described by

Eq. 5.

The second example is for a bilinear surface, where

the surface is approximated by a set of structured

points. A bilinear surface can be decomposed into a
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Figure 7: Parameter Space for a Bi-Linear Patch

set of bilinear patches, and each patch, ~R(u1; u2), is

approximated in terms of its parameters (see Fig. 7)

as

~R(u1; u2) =

(1� u1)(1� u2)~Ri;j + (1� u1)u2 ~Ri;j+1 +

u1(1� u2)~Ri+1;j + u1u2 ~Ri+1;j+1: (10)

Combining Eqs. 8 and 10 yields the following system

of nonlinear equations,

@ ~R

@u1
�f~R(~u)�~rg = 0;

@ ~R

@u2
�f~R(~u)�~rg = 0; (11)

where,

@ ~R

@u1
= (1�u2)(~Ri+1;j� ~Ri;j)+u2(~Ri+1;j+1� ~Ri;j+1);

@ ~R

@u2
= (1�u1)(~Ri;j+1� ~Ri;j)+u1(~Ri+1;j+1� ~Ri+1;j):

Equation 11 is solved by Newton-Raphson method.

It takes an average of 5 iterations to converge. The

method requires an initial guess which is found by

sampling the surface at various locations (see Fig. 8).

The third test case is projecting on a NURBS sur-

face. A NURBS surface can be expressed as

~R(~u) =

P
n

i=0

P
m

j=0
Ni;p(u1)Nj;q(u2)wi

~Pi;j
P

n

i=0

P
m

j=0
Ni;p(u1)Nj;q(u2)wi

: (12)

Combining Eqs. 8 and 12 yields a system of nonlin-

ear equations which is solved by the Newton-Raphson

method.

RfinalRinitial

r

Figure 8: Projection Process for a surface

5 Advancing Front Technique

Once the NURBS surfaces are decomposed into smaller

patches (3/4-sided ), the standard advancing front

technique is used to generate the interior triangu-

lation [3]. This triangulation is not on the actual

NURBS surfaces, but it is close. Then, the result-

ing triangulation is projected on the actual NURBS

surfaces as described in the previous sections. The

VGRID system [3] has been used to generate the ini-

tial surface triangulation.

The spacing interpolation in the VGRID system

is based on a structured background grid [4]. This

technique simpli�es the speci�cations of grid density

by introducing nodal and linear sources. The contri-

butions from nodal sources are inversely proportional

to the square of the distance. A sample triangulation

based on a nodal source is shown in Fig. 9. This is

very similar to the Shepard method of interpolation

[5]-[6]. However, the contributions from the linear

sources are modeled similar to the di�usion which

is not consistent with the nodal sources. The lin-

ear source integral-formulation in [4] becomes singu-

lar near the ends of the elements. Consequently, the

spacing is more concentrated near the middle of the

linear source which results in an asymmetric spacing
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distribution as shown in Fig. 10-11. In this study, the

contributions from the linear sources are modi�ed to

resemble the nodal sources. In order to interpolate

spacing for a point, ~P , a point must be found on the

linear source that is the closest. This can be accom-

plished by projecting the interpolation point, ~P , onto

the linear source as shown in Fig. 12. Equation 4 can

be used to compute the projected point, �a. The as-

sociated spacing at point �a can be calculated as

Sa = (S2 � S1)u+ S1

where S1 and S2 are the linear source spacings, and u

is the unidirectional parameter associated with point

�a. For point, ~P , the contribution from the linear

source can be treated as a nodal source at location

at �a with spacing Sa. Grids based on this formula-

tion are shown in 13-14. This method can be easily

extended to curve and surface sources.

6 Results and Discussions

Two test cases are projected in this study. The �rst

case is a projection onto bilinear surfaces. Figure 15

shows the results of projecting an unstructured grid

on bilinear surfaces. Figure. 16 shows the surface

contours before (solid-line) and after (dash-line) pro-

jection. Figure 17 shows the projected surface grid for

an X-15 con�guration. This grid has been projected

onto ten NURBS surfaces. Figure 18 shows the sur-

face contours before (solid-line) and after (dash-line)

projection. In both examples the projected grids were

not distorted.

Using the projection technique described above,

it is possible to generate structured and unstructured

grids on CAD surfaces. The CAD surfaces could be

overlapping as well.
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Figure 9: Grid Based on One Nodal Source

Figure 10: Grid Based on Old Linear Source
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Figure 11: Area Contours for Old Linear Source
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Figure 12: Linear Source
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Figure 13: Grid Based on New linear Source

Figure 14: Area Contours for New Linear Source
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Figure 15: Projection for a Bilinear Surface
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Figure 16: Projection for a Bilinear Patch

10



Figure 17: Triangulation for an X-15

Figure 18: Surface Contours of an X-15

11


